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SUMMARY

1. Electrophysiological properties of cat motoneurones were measured
using intracellular electrodes, after which Procion dye was injected ionto-
phoretically into the neurone through the recording pipette.

2. Histological procedures were chosen to minimize changes in neuronal
morphology. Reconstructed motoneurones had more dendritic branches
and larger surface areas than the Golgi-stained motoneurones of earlier
reports.

3. The sum of the 3/2 power of the dendritic diameters (the dendritic
trunk parameter; Rall, 1959) of the reconstructed motoneurones was found
to decrease with distance from the soma. Thus, the dendritic tree is not
satisfactorily approximated by a non-tapering membrane cylinder.

4. A computational technique was developed to allow calculation of
the specific resistance (Rm) of the membrane using the measured value of
the input resistance of the motoneurone and a more detailed approxima-
tion of the dendritic tree. These calculations indicate that the average
resting value of dendritic Rm is at least 1800 Q cm2. The specific membrane
capacity, calculated assuming uniform Rm, ranged between 2-3 ,tF/cm2.

INTRODUCTION

Synaptic currents alter the activity of neurones by polarizing the region
where action potentials are initiated. In cat motoneurones most synaptic
contacts are made on the dendritic tree (Conradi, 1969), and are therefore
spatially and electrically removed from the usual spike-initiating region
in the axon hillock. The effectiveness of these dendritic synapses depends

* Present address: Department of Physiology, University of Iowa Medical School,
Iowa, Iowa City, Iowa, 52240.
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upon the passive membrane properties of the post-synaptic cell. If the
specific membrane resistance (Rm) is high, a large fraction of the current
from distant dendritic synapses will be transmitted electrotonically to the
spike-initiating zone, whereas if Rm is low, very little of the current from
distant synapses will reach the soma and initial segment.

Earlier studies of cat motoneurones reported estimates of Rm ranging
from 500 to 4000 Q cm2 (Frank & Fuortes, 1956; Coombs, Curtis & Eccles,
1959; Rall, 1959; Kernell, 1966). This wide range ofvalues is not surprising,
since all of these studies used electrical and morphological measurements
from different samples of motoneurones. Recently Lux, Schubert &
Kreutzberg (1970) recorded the passive voltage responses of single moto-
neurones to current steps, injected the neurone with tritiated glycine,
and subsequently reconstructed the geometry of the cell from serial auto-
radiographs. Their calculations, which approximated the dendrites as
finite equivalent cylinders, set the average electrotonic length of these
equivalent cylinders at 1-5 space constants and the average Rm at
2700 Q cm2.
In the experiments described here, the passive electrical properties of

cat motoneurones were measured, after which the same cells were injected
with fluorescent Procion dye. Because morphological measurements of the
reconstructed neurones failed to justify the equivalent cylinder approxi-
mation of the dendrites, we used geometrical reconstructions of each cell
to calculate Rm, the electrotonic length L ofeach dendrite and the dendrite-
to-soma conductance ratio. The specific membrane capacity (Cm) was
calculated from Rm and the electrical time constant r0, and Rm and Cm
values were combined with geometrical measurements to predict the
detailed shape of the transient voltage response to a step of current injected
into the soma.

Preliminary reports of portions of this work have been published
(Barrett & Crill, 1971a, b).

METHODS

Animal preparation. Adult cats (1-5-2.5 kg) were anaesthetized with sodium
pentobarbitone (35 mg/kg). After the first 6 hr, the anaesthetic level was maintained
with an infusion of approximately 6 mg sodium pentobarbitone/hr. Cats were
paralysed with gallamine triethiodide and artificially respired. The posterior tibial,
anterior tibial and peroneal nerves were placed on platinum stimulating electrodes
in an oil bath. Following a lumbar laminectomy, the dorsal roots of the L 5-S 2
spinal cord segments were cut and deflected to the other side, exposing the spinal cord
lateral to the dorsal root entry zone. The temperature of the mineral oil covering the
exposed spinal cord and leg nerves was maintained at 37 ± 0.50 C by small heat lamps.
Rectal temperature was maintained at 37 +±0.1° C. A bilateral pneumothorax and
a device to hold the chest wall expanded improved stabilization of the spinal
cord.
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Recording procedures. Lumbosacral motoneurones identified by antidromic activa-

tion were impaled with bevelled (Barrett & Graubard, 1970) single- or double-barrelled
(0 tubing) electrodes filled with Procion dye (5% Procion Yellow in aqueous solution).
Micro-electrode resistances ranged from 9 to 20 M12 in spinal cord. Electrical record-
ings were made through a unity-gain, high input impedance preamplifier with
feed-back compensation for stray capacitance to ground. Current steps were applied
through a 109 El resistor, and a Wheatstone bridge circuit was used to balance the
resistance of single-barrelled electrodes or the coupling resistance between current
and voltage barrels of double-barrelled electrodes (Nelson & Frank, 1967; Burke &
ten Bruggencate, 1971). The bridge circuit was balanced extracellularly, but usually
required slight readjustment after neuronal penetration. Intracellular bridge balance
was achieved by balancing out the very fast components of the voltage response to
a current step (Nelson & Frank, 1967; Purple, 1964). This balance was checked while
neuronal input resistance was reduced to a low value by stimulating the dorsal roots
at 1 kHz. When only a few millimetres of the double-barrelled pipette tips were
filled with electrolyte fluid, the capacitative-coupling artifact lasted less than 0-2 msec.
The input resistance RN of the resting motoneurone was measured from the steady-

state voltage change produced by a depolarizing 1-5 nA current pulse lasting 20-
50 msec (Fig. 1). The conduction velocity of the motoneurone axon was calculated
from the latency difference of antidromic action potentials evoked from stimulation
sites separated by 5-10 cm on the motor nerve.

Staining procedures. Following collection of electrophysiological data, Procion dye
was injected iontophoretically from the micro-electrode using a constant hyper-
polarizing current of 60-100 nA maintained for 20-45 min (voltage clamped neurones
were not injected). Use of bevelled electrodes (Barrett & Graubard, 1970) increased
the fraction of successful injections from less than 20% to approximately 70 %.
Two to twelve hours after dye injection, the animals were perfused through the

descending aorta with phosphate-buffered 4% paraformaldehyde at pH 7-3. The
extirpated lumbar spinal cord was stored in this fixative for 12 hr before cutting
frozen cross-sections 50-100 #um thick. The final buffer osmolarity of the fixative
(450 m-osmole) was chosen to minimize swelling or shrinkage of neurones (Westrum
& Lund, 1966), and tissue dimensions showed no detectable alteration during fixation
(2 % linear accuracy). Damage due to ice crystal formation was reduced by placing
the tissue blocks in a solution of the above fixative in 15 % glycerol for 20 min before
freezing. Direct observation revealed that mounting and clearing procedures employ-
ing alcohol dehydration cause up to 50% volume shrinkage of the injected neurones.
Therefore, frozen tissue sections were mounted in 95 % glycerol, which helped clear
the tissue without noticeably changing neuronal dimensions. Motoneurones eviden-
cing histological damage were not used. Tissue sections were examined by standard
blue-light fluorescent techniques (460 mu excitation light). Dark-field illumination
was often used to reduce background fluorescence. Paraformaldehyde fixative gave
lower background fluorescence than gluteraldehyde (see also Stretton & Kravitz,
1968).

Stained cells were matched with electrophysiological records by reference to
stereotaxic co-ordinates and marker dyed electrode tracks on the contralateral side
of the spinal cord. Each neurone was traced at 600 x to 1500 x magnification using
a camera lucida attachment, and reconstructed from tracings of individual sections.
Dendritic diameters were measured at 1500 x magnification (resolution 0 5 4am).
The length of each dendritic segment was calculated from the projection in the plane
of the section and the vertical (depth) projection measured with the calibrated focal
adjustment of the microscope and corrected (using Snell's law) for the refractive
index of the mounting medium. Calculations used the actual anatomical measure-
ments with no correction factors.

13-2
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Computational methods
Steady-state calculations. Because the dendritic trunk parameter decreased with

distance from the soma (see Results), calculations of input impedance used the
detailed geometry of each injected motoneurone. The dendritic tree was broken
into 300-700 short segments (5-100 /zm in length), each approximated by a cylinder.
The length of each segment varied inversely with the rate of tapering in that portion
of the dendritic tree, such that the dendritic diameters of the segmented model never
differed by more than 0-2 jzm from the actual measured diameters, except in the large,
rapidly tapering proximal dendrites (within 10-20,m of the soma), where the
tolerance was 0-5-1 ,um.
The segmented model was transferred as a coded list of segment lengths and

diameters into a PB 440 computer, which calculated the value of the steady-state
neuronal input resistance RN for a given assumed value of Rm by applying eqn. (14)
for the case w = 0 (see Appendix) to successive dendritic segments (see also Rall,
1959). The accuracy of the computer programs was confirmed by applying them to
branched, non-tapering dendritic models, for which a direct analytical (equivalent
cylinder) solution was available for comparison (Rall, 1959). By using an analytical
solution for the input resistance of each segment, instead of approximating the
dendrites as a series of isopotential compartments, we avoided any intrinsic com-
putational error due to the finite cable lengths of the segments.

Computations began by calculating the input conductance of the most distal
dendritic segments, assuming either sealed or infinite cylinder-termination (see
Results). The input conductance of the distal segment specifies the terminating
conductance of the next more proximal segment, allowing calculation of the input
conductance of that segment, and so forth toward the soma. At branch points the
terminating conductance of the parent branch is the sum of the input conductances
of the daughter branches. The input conductance at the soma (the reciprocal of its
input resistance RN) is the sum of the input conductances of all the dendrites added
in parallel and the input conductance of the soma, the latter calculated from a geo-
metrical approximation of the soma shape.

Calculations of RN were repeated for Rm values ranging from 500 to 4000 Qcm2,
to give plots such as that of Fig. 3. The value of Rm that predicts the steady-state
input resistance of the whole neurone seen by an electrode in the soma is taken as
the average RmOf the motoneurone, assuming uniform Rm for all membranes.

Transient calculations. The complex input impedance of the neurones at the soma
was calculated at various frequencies (see below) by applying eqns. (12), (13) and (14)
(Appendix) to the segmental model of the dendritic tree described above. Calcula-
tions employed the average value ofRm (see above) and the longest time constant to
in the electrically recorded response to an applied current step (e.g. Text-fig. 1).
Computations at any one frequency followed the iterative procedure outlined above
and in the Appendix. At each frequency co the complex input impedance, Z(W), was
expressed in polar form as an amplitude A(U) and a phase shift qS(w),

Z(o)) = A(U) WOO.

Calculation of Z(w), A (w) and 0(Z) was repeated for at least 200 frequencies between
0 and 105 wr0 (normalized frequency, see Rall, 1959; ten frequencies between 0 and
0-1 &or0, 160 between 0 1 and 103 wro, and thirty between 103 and 10, cOr0), such
that for 0 < w)T0 < 10 plots of A(@) and 0(w) constructed by linear extrapolation
between calculated points would not deviate by more than 0-1 % from the actual
calculated value at any intermediate frequency.
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From these data, the impulse response of the neurone, h(t), was evaluated

numerically using the Fourier integration:

2 A
h(t) = -fA(w) cosO(w) cos dot.(d1)

77 J

Convolution of h(t) in eqn. (2) yields the voltage response of the neurone, V(t), to
current, 1(t), applied at the soma:

V(t) = fh(t-T) 1(T) dr. (2)

The impulse response was also used to predict the transient current response to
a voltage step in the voltage-clamp mode, by letting the voltage time course in
eqn. (2) be a step at t = 0 and solving numerically for 1(t).

Certain features of these experimental and analytical techniques are elaborated
in Barrett (1973), and related computational techniques are discussed by Norman
(1972).

/ 5 2mV

i t ii S~~~~~~~~~msec

Text-fig. 1. Voltage response recorded from motoneurone 8, during injection
of 3 nA current step during the solid bar at bottom of the Figure. Time
calibration is 5 msec; voltage calibration is 2 mV. Note slight hyper-
polarization after pulse.

RESULTS

Anatomical observations. Text-fig. 2 shows a reconstruction of a dye-
injected motoneurone, made by superimposing tracings of dye-filled
branches from twelve serial cross-sections. The distal terminal dendritic
branches of the injected motoneurones were 300-800/,tm from the cell
body and had diameters of 1 #etm or less. Axons could usually be followed
into the ventral white matter adjacent to the ventral grey and, in half
the cases, into the ventral root filament. Three of forty stained cells showed
axon collaterals branching about 300 gm from the soma. A prominent
feature of the motoneurone reconstructions was the variable size of the
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dendritic arborizations. Each neurone had eight to twenty-two primary
dendritic trunks, and the calculated surface area of the soma and dendrites
ranged from 79,000 to 250,000um2. Aitken & Bridger (1961) saw two to
fourteen primary dendrites (mean seven for their multipolar neurones)
in their Golgi-stained cat ventral horn neurones. Their largest cell had
a surface area of 98,000tum2. Our injected motoneurones also displayed
a greater total dendritic length and a higher dendrite-to-soma surface

I

I I
I 6
I I
I ,

1.

I'"
,. -. .

Text-fig. 2. Reconstruction of a Procion-dye injected motoneurone from the
medial gastrocnemius nucleus. This is a composite of tracings of dye-filled
segments from twelve serial cross-sections, each 100 pm thick. Dashed
dendrites are behind the plane of the soma. Scale 100 gtm.

area ratio than the Golgi-stained neurones. Histological precautions against
cell shrinkage (see Methods) probably account for the larger size of our
injected neurones. The intense fluorescence of the injected dendrites
allowed us to detect more dendritic branches and to follow dendrites
easily from one serial section to the next.

Other investigators have assumed that the more rapidly conducting
axons originate from larger motoneurones because of the inverse relation-
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ship between input resistance RN and axonal conduction velocity (Kernell,
1966). The data in Table 1 confirm this: dendritic surface area is positively
correlated with axonal conduction velocity (regression correlation co-
efficient r = 0-61; P < 0 04 by t test) and is also inversely related to
input resistance (r = - 0 79, P < 0.005).

Specific membrane properties. In several previous studies, the dendritic
tree of motoneurones was approximated as an equivalent cylinder (Rall,
1959; Lux et al. 1970). This assumption is valid if the combined dendritic
trunk parameter (10, where d is the diameter of each dendritic branch)
does not change with the distance from the soma (Rall, 1959). Lux et al.
report a decrease in Edi over the proximal 50 jtm of the dendritic tree, but
suggest no further decrease beyond this distance. Our motoneurone re-
construction also showed a rapid decrease in IdO in the proximal dendritic
tree, but, in addition, eight of the ten motoneurones studied in detail
exhibited a continuing (although slower) decrease in IOd over the distal
dendritic tree as well (Fig. 6, see also Barrett & Crill, 1971 b). Between
50 and 300,tm from the soma, for example, IdO in these eight motoneurones
dropped 22-37-5 %. The two other motoneurones exhibited less than a 5 %
decrease in Edi over this distance. Between 0 and 300 Itnm from the soma
most of the decrease in Adz was due to dendritic tapering between branch
points (P1. 1), rather than to loss or termination of dendritic branches. EdI
appeared to be preserved at branch points, in agreement with Lux et al.
The observed overall decrease in Ads with distance was not due to rapid
tapering in a few 'anomalous' dendrites; in some motoneurones over 90 %
of the individual dendrites exhibited significant tapering between 50 and
400 Itnm. The observed degree of tapering in the ten motoneurones was not
obviously related to the time between dye injection and fixation (i.e.
diffusion time); tapering was evident even in neurones allowed 12 hr
diffusion time. Beyond 300-400 Itnm termination of dendritic branches
accounted for most of the continued decrease in EdI.

Thus, both dendritic tapering between branch points and distributed
termination of dendrites caused the dendritic trunk parameter to decrease
with distance from the soma in the majority of our motoneurones. Because
the dendritic trunk parameter was not constant, we did not use the equiva-
lent cylinder approximation, but rather approximated the dendritic tree
as a series of short, branched, interconnected cylinders (see Methods).
To evaluate the relationship between RN and Rm using eqn. (14), values

for the resistivity of the cytoplasm, Ra, and the terminating admittance,
YT, of the most distal core segments are needed. Previous studies of moto-
neurones have used values of Ra, ranging from 50 0 cm (Rall, 1959) to
100 Q cm (Lux et al. 1970). We measured the resistivity of the somatic
cytoplasm using the technique of Schanne (1969) and obtained a mean
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MOTONEURONE MEMBRANE PROPERTIES

value of 70 + 15 Q cm S.D., comparable to Ra values for other vertebrate
neurones (Schanne, 1969). Our calculations used this average Ra value;
Ravalues of50Q cm and 100Q cm yield Rm values 5-15% higher and (5-15%
lower, respectively, than those reported here. Present evidence favours the
hypothesis that dendritic terminals are closed and have a negligible con-
ductance (Jack, Miller, Porter & Redman, 1971). Because dye may not

500 um 400 ,tm 300 ,pm 200 4um 150 jim 100 aum

1*5 -~~-- -- -

43~~~~~~~~~~~~~~a
U
r- 1*0

0.5

0 1000 2000 3000 4000 5000
Specific membrane resistance (Q/cm2)

Text-fig 3. Calculated input resistance RN (M!Q) as a function of specific
membrane resistance Rm ((Q cm2) for motoneurone 5, Table 1. Circles and
triangles represent RN values calculated from the detailed neuronal
geometry using the closed-end and infinite-extension terminating con-
ditions, respectively (see text). Dashed horizontal line marks 1-45 MC, the
electrophysiologically measured value of RN for this neurone. Continuous
curves were calculated with the equivalent cylinder model of the dendritic
tree, using values of the dendritic trunk parameter measured from neuronal
geometry at the indicated distances from the soma.

reach the most distant dendritic terminals, Rm was determined for two
extreme terminating conditions: (1) the closed-end approximation, which
assumes that dendrites end at their most distal visible point and (2) the
infinite-extension approximation, which uses a terminating conductance
equal to the input conductance of a cable extending to infinity with a
diameter equal to that of the most distal measured segment.

Text-fig. 3 plots the predicted input resistance RN for a motoneurone
(number 5 in Table 1) as a function of different assumed values for the
uniform membrane resistance Rm. The calculated curves intersect the
experimentally measured RN value (1.45 MO) at an Rm of 2080 Q cm2
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using the closed-end approximation (circles), or 2250 Q cm2 using the
infinite-extension approximation (triangles). The actual Rm value assum-
ing uniform Rm for the geometrical reconstruction of this neurone must
lie between these limits. For ten motoneurones the mean values of Rm
calculated using the closed-end and infinite-extension terminating con-
ditions were 1770 Q cm2 and 2520 Q cm2, respectively (Table 1). Calculated
Rm values show a small negative correlation with cell size (r =-024,
P < 0*025, closed-end; r =-0-42, P < 010, infinite-extension).

4 #IF/cM2 2 pF/CM2

8

<16-

E I7F cM
C 4

0I
E

2-

0 1000 2000 3000 4000
Specific membrane resistance (f2/cm2)

Text-fig. 4. Scatter plot of the electrophysiologically measured time
constant ro (msec) vs. the calculated value of specific membrane resistance
Rm (fi cm2) for ten motoneurones. r0 was measured from the slope of the
final exponential decay assuming that the appropriate electrical geometry
was a finite structure with open circuit termination of the dendrites (Rall,
1969). Filled circles represent Rm values calculated assuming closed-end
dendritic terminations; x 's show Rm values determined assuming infinite
extension (see text and Text-fig. 4). Horizontal lines connect the two Rm
estimates for a particular motoneurone. Diagonal lines illustrate the theo-
retical relationships between r0 and Rm calculated assuming the indicated
values of specific membrane capacity.

The continuous curves in Text-fig. 3 show the theoretical relationships
between RN and Rm calculated by approximating the dendritic tree as
infinite equivalent cylinders (Rall, 1959), using values of the dendritic
trunk parameter measured at the indicated distances from the soma of
motoneurone 5. In this particular example, the values of Rm determined
using the detailed neuronal geometry and the equivalent cylinder model
coincide when the dendritic trunk parameter is measured 200,um from
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the soma. This 'coincident distance' varied from one motoneurone to
another, however, so that the dendritic tree of the motoneurones studied
here could not be approximated accurately merely by measuring the
dendritic trunk parameter at some fixed distance from the soma.
The ratio of the combined input conductance of the dendrites to the

input conductance of the soma, p, ranged from 4-6 to 16 (mean 9.3) for the
closed-end approximation of the dendrites and from 6-3 to 21 (mean 12-7
for the infinite-extension model (Table 1). In calculating p the soma-
dendrite junction was arbitrarily assumed to lie on the rapidly tapering
base of the primary dendrites at the point where the rate of change of
dendritic diameter became less than 10% per micron.

Approximate geometrical distance (Cm)
250 400 600 700

20

15

0*

0 05 1-0 1-5 2-0 25
Electronic length (space constants)

Text-fig. 5. Histogram of electrotonic lengths (space constants) calculated
for the dendrites of motoneurone 5 using eqn. (3). Mean electrotonic length,
1-5 space constants.

The longest time constant, ro, of the voltage response to a current step
input is equal to the product of Rm and the specific capacity, Cm. Thus, if
Cm is constant from neurone to neurone, a plot of Rm vs. ro for different
neurones should be linear with a slope equal to Cm. The data plotted in
Text-fig. 4 show Cm values between 1-5-4 ,uF/cm2, with a mean value of
2-9 ,tF/cm2 for the closed-end terminating condition (see above) and
2-1 ,cF/cm2 for the infinite-extension condition.

Electrotonic lengths of dendrites. Our morphological measurements were
sufficiently detailed to allow calculation of the electrotonic length L of
every dendrite of each of the ten motoneurones in Table 1, using the
equation (Rall, 1959, 1962):

L = dx, (3)
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where xl is the geometrical distance from the soma to a terminal dendritic
branch and A is the space constant of a dendritic segment,

A = jVdV(Rm/Ra).
L ranged from 0-8 to 2-2 space constants (mean 1-4) for all the dendrites
studied (dendritic terminals were 300-800 4am from the soma). The average
electrotonic length of the dendrites of a given motoneurone ranged from
1.1 to 1.5 space constants (Table 1). These calculated average L values
agree quite well with previous electrophysiological estimates ofL (Burke &
ten Bruggencate, 1971), arguing that most of the distal dendritic branches
were included in our sample, and that the dendrites terminate in closed
ends. Text-fig. 5 is a histogram of the calculated electrotonic lengths from
the soea-to each of the ninety terminal dendritic branches in moto-
neurone 5.

Text-fig. 6 plots the dendritic trunk parameter (7dl) as a function of

Approximate
geometrical distance (microns)

0 400 700
40,000

U

400 2
0

U

E | _ 30,000 c

300

E C

E~~~~~~~~~~~~~~~~~
20,000 .

C 200 V

a 100_< _ ~~~~~~10,000^

X £

0 1 0 20 30
Electronic, distance (space constants)

Text-fig. 6. Combined dendritic trunk parameter (Di = Zdl) as a function
of electrical distance from the soma in motoneurone 5. Because the deriva-
tive of membrane area with respect to electrotonic length is directly
proportional toDi (eqn. (4)), this plot also gives the fraction of dendritic area
at various electrotonic distances from the soma, as indicated by the right-
hand scale. Left-hand ordinate: um, right-hand ordinate: 'UM2/0 1A,
abscissa: space constants. Electrotonic distance was calculated assuming
an RM value of 2000 0CM2.
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electrotonic distance from the soma for motoneurone 5. The progressive
decrease in 2di during the proximal 08 space constant is primarily due to
tapering of the individual dendrites between branch points (P1. 1). Beyond
0O8 space constant an increasingly large portion of the decrease in Edi
results from the termination of dendritic branches.

Eqn. (4) shows that the increment in membrane area for a small
increment in electrotonic length (AZ) is proportional to the value of the
combined dendritic trunk parameter at the given electrical distance L1:

_A,, O~AJ dX ~= ad, A, !R (4)E3 ILE(bxdZ)IL, j 2N\(Ra/ dJ4

where AT at L. is the cumulative membrane area between the soma and L1
expressed as a function of electrical length; Aj is the same area function
for a single dendritic branch; dj is the diameter of the jth branch at Li;
and x is geometrical length. This relationship holds for any dendritic
geometry, and is implicit in eqn. (21) of Rall (1962).

Accordingly, Text-fig. 6 also plots the relative amount of membrane
area at different electrotonic distances from the soma (see right-hand scale).
It is evident that membrane area decreases steeply with electrical distance.
Thus, even if the density of synaptic endings were constant over the entire
neuronal membrane, only a small fraction of the endings would be electri-
cally distant from the soma. In fact, Ia afferent terminals are less dense on
distant than on proximal dendrites (Conradi, 1969), suggesting that even
fewer synapses are electrically distant from the soma than would be pre-
dicted solely on the basis of dendritic membrane area. By multiplying our
values of membrane area at various electrotonic distances from the soma
(Text-fig. 6) by Conradi's values for the percentage of Ia synapses at the
approximately corresponding geometrical distances, we obtained a rough
estimate of the distribution of Ia synapses with electrotonic distance from
the soma. This distribution agrees approximately with that predicted from
the shape of Ia e.p.s.p.s by Jack et al. (1971), both distributions showing
fewer than 10% of the Ia synapses located more than 1-5 space constants
from the soma.

Predicting the transient voltage response at the soma. Tapering of the
dendritic tree (P1. 1, Text-fig. 6) should have predictable effects on the
electrical responses of the neurone. In an attempt to obtain electrical
evidence for dendritic tapering, we calculated the impulse response, h(t),
predicted for a detailed, tapering neuronal geometry and for non-tapering
equivalent cylinders (Text-fig. 7), and compared these calculated responses
to the derivative of the measured voltage response to a current step applied
at the soma (Burke & ten Bruggencate, 1971). Calculations of the predicted
impulse responses used the Fourier techniques described in Methods and
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the Appendix. A peeling procedure used by Rall (1969), Nelson & Lux
(1960) and Burke & ten Bruggencate (1971) was employed to express both
the calculated impulse responses and the derivative of the measured step
response as a series of exponential components of the following form:

h(t) = h0e-tlro + hI e-t71' + . . . + hne-tITn, (5)
where ho and r0 are the amplitude and time constant, respectively, of the
slowest term in the series (ro = RmCm).

Unfortunately, our electrical measurements were not sufficiently accurate
to distinguish between the tapering and nontapering models. The use of
single relatively high resistance electrodes to pass current and record
voltage responses, and the negative capacitance feed-back system prob-
ably produced a systematic distortion of the transient responses, especially
their earlier portions. The ratio of the two slowest time constants, r0/rl,
averaged 5-2, in approximate agreement with the ro0lr ratios predicted
from the tapering neuronal geometry, but also agreeing with the 0/rl
ratios calculated for a nontapering equivalent cylinder with an electro-
tonic length intermediate between the average and the longest measured
electrotonic lengths of the neurone's dendrites.
M. Goldstein & W. Rall used a different calculation technique to predict

the impulse response for a single equivalent core conductor with two
exponential tapers fitting the 2di vs. electrotonic distance relationship
measured for motoneurone 5 (Text-fig. 6). They calculated a time constant
ratio, r0/ol, in approximate agreement with the ratio we determined using
the detailed neuronal geometry (personal communication).
The nontapering equivalent cylinder and detailed geometry models

predict considerably different amplitude ratios ho/h1: the detailed geo-
metry gives ho/h1 values of approximately 1, whereas the equivalent
cylinder model predicts a ratio of 0.5, regardless of the electrotonic length
of the cylinder. The measured values of ho/h1 for neurones in this study
averaged 0-66, but these amplitude measurements are subject to consider-

Legend to Text-fig. 7
Text-fig. 7. Computer calculated transient responses for motoneurone 5
(Table 1). A, current-clamp impulse responses. B, voltage-clamp current
transient responses. In both A and B the continuous line is calculated
response for a uniform soma and dendritic membrane resistance of
2000 Q cm2; dashed line is calculated response for a dendritic membrane
resistance of 8000 Q cm2 and a soma membrane resistance of 294 0 cm2;
and dotted line is calculated response for a nontapering equivalent cylinder
model with a uniform membrane resistance of 2000 n cm2. The abscissa is
normalized so that the three models give the same values for their longest
observed time constant.
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able error from imperfections in the shape of the current pulse and in the
capacity compensation system of the voltage recording amplifier. However,
measurements of voltage-clamp transients made with a better recording
system (employing separate current and voltage electrodes) for a different
sample of motoneurones (not injected with dye) were also best fitted
assuming an impulse response with an ho/h1 ratio of about 0 7. The fact
that our measured ho/h1 ratios fell between the values predicted by the
tapering and nontapering models might argue for a degree of tapering
less than seemed evident from our anatomical measurements, but in fact
amplitude ratios measured to date are probably too inaccurate to define
the degree of tapering in the dendritic tree.

DISCUSSION

The geometry and electrical properties of the same motoneurones have
been measured in order to calculate Rm and Cm for a core conductor model
of the cells. The calculated parameters represent effective values, averaging
out possible local nonuniformities with spatial extents short compared to
the electrical space constant. Use of the core conductor model is based on
assumptions expressed in other studies (Rall, 1959; Jack & Redman,
1971).
Dye injection and histological procedures. Artifactual alteration of

neuronal dimensions could significantly affect calculations of membrane
parameters, since Rm varies with the measured values of dendritic diameter.
Comparison of dye-injected motoneurones with adjacent uninjected moto-
neurones suggested that dye injection did not distort general neuronal
morphology unless sustained currents exceeding 100 nA were used. Simi-
larly, frog muscle fibres injected under direct observation showed no
detectable change in diameter unless currents (> 40 nA) sufficient to
produce local contraction were used (unpublished observation). Pruves &
McMahan (1972) reported little or no gross morphological distortion of
Procion dye-injected leech motoneurones, but did see obvious changes at
the ultrastructural level (e.g. swelling of mitochondria and endoplasmic
reticulum, and altered staining of some cellular constituents). The para-
formaldehyde fixative solution used in this study was hypertonic (final
buffer osmolarity 450 m-osmole) and could have caused some cell shrink-
age, yielding an underestimate of Rm. However, distances between dye
reference markers in spinal cord did not change during fixation. Likewise,
no alteration in neuronal dimensions was observed upon transferring
sections into the glycerol mounting solution. The absence of gross changes
in dimension suggests, but does not prove, that there was no significant
swelling or shrinkage in single motoneurones.

316



MOTONEURONE MEMBRANE PROPERTIES

Previous studies estimated Rm using geometrical measurements from
alcohol-dehydrated motoneurones, but only Lux et al. (1970) attempted to
correct for shrinkage. Shrinkage due to alcohol dehydration may be one
reason why earlier studies based on Golgi-stained preparations gave lower
values of Rm.
We observed a significant decrease in the dendritic trunk parameter

throughout the length of the dendritic tree in most dye-injected moto-
neurones, in contrast with the report by Lux et al. of little decrease at
distances beyond 50 ,um in motoneurones injected with radioactive glycine.
These discrepant results may be due to errors in one or both experimental
methods. It is possible that the tapering between branch points is an
artifact produced by dye diffusion gradients. Such gradients could also
cause premature loss of fine dendritic branches. However, when such
gradients were deliberately enhanced by fixing the preparation immediately
after dye injection, there was no systematic increase in measured tapering,
and neurones given twelve hours of post-injection diffusion time still
showed tapering. Dendritic fluorescence was usually many times higher
than the background level, making artifactual loss of dendrites greater
than 1 lam in diameter extremely unlikely, but it is conceivable that some
small dendritic branches became blocked and did not fill with dye at all.
On the other hand, Lux et al. may have overestimated the diameter of the
smaller more distal dendritic branches in their autoradiographs due to
scattering of tritium beta particles (Hill, 1962). Further improvements of
both methods, perhaps in combination with electron microscopy, will be
necessary to determine the actual degree of tapering in individual moto-
neurones and in different populations of motoneurones (cf. Kellerth, 1973).

Calculation of passive membrane properties. Models of the electrical
behaviour of neuronal membranes usually include an unchanging mem-
brane capacitance and two classes of ionic conductances: (1) instantaneous
passive leakage conductances, and (2) active conductances that are a
function of time and voltage. If the values of Rm calculated in this study
are to estimate the passive instantaneous conductance of the soma and
dendrites, RN must be measured where the slope of the voltage-current
relationship is constant. Previous studies indicate that the voltage-current
curve is approximately linear between the resting potential and threshold
(Araki & Terzuolo, 1962; Nelson & Frank, 1967; see however, Ito &
Oshima, 1965), and our measurements confirmed this. The 1-5 nA de-
polarizing current used here to estimate RN produced voltage changes
within this passive linear range.

In calculating the specific membrane parameters of the motoneurone it
is necessary to take into account the geometrical properties of the dendritic
tree. Rall (1959) developed iterative procedures for calculating Rm that
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could be applied to any dendritic geometry, but in most previous studies
the dendrites have been approximated by finite or infinite equivalent
cylinders (Rall, 1959; Kernell, 1966; Lux et al. 1970). Our geometrical
measurements did not justify this approximation because in most moto-
neurones the dendritic trunk parameter decreased with distance from the
soma (Text-fig. 6). Thus we calculated the relation between specific
membrane parameters and the measured input impedance at the moto-
neuronal soma by applying Rall's original iterative methods (extended to
the transient case, see Appendix) to a detailed segmented model of the
dendritic tree.

Synaptic activity can markedly reduce the effective values of RN and
Rm (Smith, Wuerker & Frank, 1967; Barrett & Crill, 1974). The anaesthetic
levels used here have no direct effect on RN (Weakly, 1969), but the reduc-
tion in incoming synaptic activity produced by combined anaesthesia and
paralysis probably results in RN and Rm values greater than the effective
values in alert, active preparations.
The calculations reported here assumed a uniform Rm. However, even

if the soma had an infinite Rm, the calculated dendritic Rm would be only
20% lower than the uniform Rm value. Thus, regardless of whether Rm is
uniform over both dendrites and soma, the values calculated assuming
uniformity must estimate the lower bound of dendritic Rm. In an attempt
to place an upper bound on dendritic Rm, current-step and voltage-clamp
transient responses were calculated assuming various non-uniform distri-
butions of Rm. However, dendritic Rm could exceed 8000 Q cm2 (in this
case, somatic Rm would be 240 2 cm2) before the predicted, time-normalized
transient (since r0 $ RmCm when Rm is not uniform, time normalization
was done on the basis of computed r0 values) response becomes signifi-
cantly discrepant from our transient response data. (The major differences
between the calculated transient responses occur in their early time course,
where our measurements were subject to systematic error.) Thus, the
major positive accomplishment of this study was to place a lower limit
of about 1800 Q cm2 on the average specific resistance of the dendritic
membrane in motoneurones of anaesthetized paralysed cats. This lower
bound on dendritic Rm is important in the calculations of the functional
role of dendritic synapses presented in the following paper (Barrett &
Crill, 1974).
The values calculated for specific membrane capacitance (2-3 ,tF/cm2)

are higher than the value of 1 #tF/cm2 measured for crustacean and squid
axons (Hodgkin & Rushton, 1946; Hodgkin, Huxley & Katz, 1952) and
generally accepted as a standard value for biological membranes. Our
higher calculated values of Cm could be due to underestimation of Rm,
caused for example by loss of distant dendritic branches or by cell shrink-
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age. Nonuniformities in Rm, could also cause errors in the value of Cm
estimated by dividing the average Rm by the longest time constant of the
step response. For example, in the case discussed above (dendritic Rm
8000 Q cm2, somatic Rm 240 Q cm2) this calculation method would over-
estimate Cm by a factor of two. The value of Cm can also be overestimated
if membrane folding is not taken into account (discussed by Gorman &
Mirolli, 1972), but electron micrographs of cat motoneurones show very
few membrane folds or spines (Conradi, 1969).
On the other hand, it is possible that Cm for the motoneuronal membrane

is greater than 1 ,uF/cm2. Several studies of vertebrate neurones calculate
higher values of Cm, for example, 3 and 1-6 puF/cm2 in cat and rat superior
cervical ganglion neurones, respectively (Skok, 1968; Sacchi & Casella,
1970) and 1*5-5 #uF/cm2 in pyramidal neurones of cat motor cortex (Lux &
Pollen, 1966). Woodbury, White, Mackey, Hardy & Chang (1970) point
out that a small increase in the protein content of the cell membrane could
significantly increase Cm, because the dielectric constants of proteins are
greater than those of lipids.

APPENDIX

Calculating the impulse response of the soma
This section derives the basic cable equation used to calculate the input

impedance of a dendritic segment at a given frequency Cl from the geo-
metrical and electrical properties of the segment and its termination
impedance. Calculations for all the dendritic segments are combined and
used to determine the complex input impedance of the soma, from which
the impulse response of the soma is predicted.

x=o .x

Soma Y )

Text-fig. 8. Cylindrical approximation of a dendritic segment.

The dendrites are divided into short segments, each approximated as
a core-conducting membrane cylinder (Text-fig. 8) with length Ax, time
constant T (T = RmCm), diameter d, axoplasmic resistivity Ra (70 Q cm),
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space constant A [A = iJVdV(RmIRa)], and terminating complex admit-
tance YT(jw) (equal to the admittance seen from xi looking into the distal
adjoining segment). The cable equation for the membrane cylinder is

A2 a2V(X, t) a V(x ) +V(x,t)(6)
Taking the Fourier transform of eqn. (6) with respect to time yields

d2f(xjW) = f(x, jw) (1+ji)

whose general solution is:
f7(x, j) = Al eyx +A2 eiYX, (7)

where Y (1 +jwr)

The transform ofthe current leaving the cylinder at xl equals the product
of the transforms of the terminating admittance YT(jw) and the voltage
at xl:

7(xl,jW) = R dxz | = YT(jw) V(xl,jW). (8)
a X

The ratio of the constants Al and A2 in eqn. (7) is given by

A2
_

e2vxi ~y+YT(j, 0)) Ra 9

Al -YT (j,(o)R) (9)

Similarly, the transform of the current flowing into the cylinder at its
proximal end (x = 0) equals the product of the input admittance transform
Yi,,(jcw), times the transform of the voltage at x = 0;

I(x = 0,jw) = dIdtP(x,j) | = Yin(jw&) f(0,jw). (10)

Simultaneous solution of eqns. (7) and (10) for the transform of the input
admittance of the cylinder Yij(jo) gives:

2' {A21A1-t11Yi11(if) - eRa (A /A1+ 1 (11)

Substituting in eqn. (11) the value of (A2/A1) from eqn. (9) yields:

Yin(icO) = J+A
RaA

exp(2AZV(1 +iwr))]k(1 +j(wr) +RaAYT] +RaAYT-J(1 +ijw)|

te( p (2V(1 +ji0r))] [(1 +j0)r) +RaAYT] -RaAAYT +1(1 +jwr)j
(12)
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The complex terminating admittance YT(jw) may be written as the sum
of real and imaginary parts:

YT= c(wo) +j/6(wo). (13)
Substituting eqn. (13) for YT(jw) in eqn. (12) gives an expression for
Yln(j5() that can be separated into real and imaginary parts:

Yin(j(W) = P(cc, /5, X, A, xl, co) =jQ(oc, /?, r, A, xl, w), (14)
where

1 lOG+HD\
P(a, 8A, 7, A, xI, (") =RaA ( G2 N-g ) X

1 (DG-CH\
Q(,A,AT. A, X1,)G)= +H2

C = a(A+RaAx-a)-b(B+RaA/J-b),

D = b(A+RaA-a)+a(B+RaAl,-b),
C = A-RaA-a,

H = B-RaAfi+b,

A = exp (2xA [(a+ RaAca) cos (2xb - (b +±R.A1l) sin (2xb)]

B = exp(2xa )[(a+RaA) sin +A +(b+AAN (2b

a = j(V(1+w2T)+), b = _____+2)-)

At a given frequency w1 only two numbers x(&kl) and fl(w1) are required
to specify the input admittance Yin of a given segment k. Since Yin for
segment k is the terminating admittance, YT, of the next more proximal
segment k + 1, the ax and fl values specifying Yin for segment k also specify
the value of YT needed to calculate Yin for segment k + 1 at oi. Calculations
start at the most distal visible dendritic tip, assuming either sealed or
infinite-cylinder termination (see Results), and proceed iteratively toward
the soma. At branch points the terminating admittance of the parent
dendritic trunk equals the sum of the input admittances of the daughter
branches. The input admittance at the soma is the sum of the input
admittances of all the dendrites added in parallel and the input admittance
of the soma calculated from its shape. The input impedance at the soma
is the reciprocal of the soma input admittance.
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EXPLANATION OF PLATE

PLATE 1

Dendritic tapering in a Procion-dye injected motoneurone. The illustrated decrease
in diameter with distance from the soma is typical of most dendrites observed in
this study. Two photographs were combined to keep the dendrite in focus. Scale
100 /am.
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